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Listeria monocytogenes is an opportunistic 
bacterial pathogen that represents an important 
hazard to human health because it is capable of 
causing disease, mainly in certain well-defined 
high-risk groups of newborns, elderly, immuno-
compromised individuals, and pregnant women 
[1], with clinical manifestations of meningitis, en-
cephalitis and/or septicemia [2]. Although less 
frequent in humans compared to e. g. campylo-
bacteriosis or salmonelosis, with a 17.8% fatality 
rate reported in 2012 [3] listeriosis ranks among 
the most frequent causes of hospitalization and 
death due to food-borne illness. Sporadic cases of 
listeriosis were recently reported also in Slovakia, 
31 cases in 2011 [4] and 11 cases in 2012 [3]. In re-
cent years, an increasing rate of listeriosis was re-
ported in several European countries [5].

Ingestion of food contaminated with L. mono-

cytogenes is the primary route of transmission 
of the pathogen to humans [6]. According to 
the current European regulations on microbio-
logical criteria for foodstuffs, zero tolerance 
for the presence of L. monocytogenes is set for 
ready-to-eat foods for infants, as well as for other 
ready-to-eat foods able to support the growth of 
L. monocytogenes, before leaving the immediate 
producer control. In 2005, the European Union 
adopted a policy that L. monocytogenes may be 
present at levels up to 100 CFU per gram in the 
rest of food products placed on the market [7]. 
This regulation also requires that the producers 
of ready-to-eat foods examine the processing en-
vironment and exclude L. monocytogenes contami-
nation.

L. monocytogenes has been isolated from a va-
riety of food products, most foodborne cases of lis-
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The method enables to cluster L. monocytogenes 
strains into five molecular serogroups IIa, IIb, IIc, 
IVa and IVb in agreement with the most common-
ly encountered serotypes 1/2a (together with 3a), 
1/2b (3b, 7), 1/2c (3c), 4a (4c) and 4b (4ab, 4d, 4e), 
respectively. Another PCR, targeted to flaA gene, 
facilitates specific identification of serogroup IIa.

L. monocytogenes strains are divided to four 
genetic lineages (I, II, III, and IV), for which the 
different pathogenic potential is assumed. Most 
L. monocytogenes isolates belong to lineages I and 
II. Lineage I strains, in particular serovar 4b, are 
associated with most human listeriosis outbreaks. 
Lineage II strains are common in foods, natural 
and farm environments, commonly isolated from 
animal listeriosis cases and from sporadic human 
clinical cases [20]. 

Typing of L. monocytogenes isolates from lis-
teriosis outbreaks has suggested that many out-
breaks were caused by a small number of so called 
epidemic clones (EC). These are closely related 
groups of isolates that evolved clonally. Seven 
L. monocytogenes epidemic clones (ECI to ECVII) 
have been reported up to date. Epidemic clones 
were implicated in several outbreaks and spo radic 
cases of listeriosis worldwide [12, 21]. They are 
considered more virulent than other strains and/or 
have a better ability to persist in different environ-
ments and/or multiply faster in foods [22].

Cheese products belong to important vehicles 
of L. monocytogenes. In this study, contamina-
tion by L. monocytogenes of three small or me-
dium-sized factories producing bryndza cheese 
was investigated. This type of cheese is a raw ewes’ 
milk-based cheese very popular in Slovakia [23]. 
All three production factories were well equipped, 
having most food-contact surfaces and equipment 
made from stainless steel. Appropriate procedures 
of cleaning and sanitation were performed on 
a systematic basis according to the good hy gienic 
and sanitation practice. From these premises, 
L. monocytogenes was isolated and characterized 
by molecular serogrouping and PFGE, with the 
aim to reveal sources and routes of contamination 
by the pathogen.

MATERIALS AND METHODS

Sample collection
Samples were collected from three ewes’ milk 

processing factories in Slovakia, quarterly from 
May 2011 to December 2014 in two factories 
(A and B), and from January 2013 to Decem-
ber 2014 in the third factory (C). Two of them 
(A and C) represented factories with their own 

teriosis being connected to ready to-eat products 
that are believed to get contaminated during and 
after processing [3]. This emphasizes the impor-
tance of monitoring the environment of food 
processing factories, to identify potential contami-
nation sources and transmission routes in the food 
production chain, particularly regarding persistent 
L. monocytogenes strains. Presence of persistent 
strains could result from insufficient effective-
ness of cleaning and sanitizing procedures, which 
allow survival and adaptation of L. monocytogenes 
strains [8]. The source of contamination may origi-
nate in external environment and, after breaking 
the hygienic barriers, can cause contamination 
of the internal environment and, subsequently, 
contamination of final products. This route has 
been identified by characterization of L. monocy-
togenes isolates by molecular typing methods with 
high discriminatory power, such as whole genome 
DNA restriction coupled to pulsed-field gel elec-
trophoresis (PFGE) [9], amplified fragment length 
polymorphism (AFLP) or multi-locus sequence 
typing (MLST) [10].

Ready-to eat foods, smoked fish and other fish 
products, followed by meat products and cheese 
have been identified as the foods most frequently 
associated with listeriosis outbreaks [11]. Cheese 
has been implicated in sporadic cases and also in 
major listeriosis outbreaks worldwide. Environ-
mental contamination, in several occasions by per-
sistent strains, has been considered an important 
source of final product contamination, particularly 
in raw milk cheeses [12, 13].

Genome DNA restriction coupled to PFGE is 
currently the preferred technique for molecular 
typing of L. monocytogenes due to its high repro-
ducibility and discriminatory power. Applicability 
of the method is very high also thanks to availabil-
ity of an international database of PFGE patterns, 
PulseNet [14]. PFGE has been successfully used to 
differentiate L. monocytogenes isolates associated 
with foods and food processing environments, fa-
cilitating identification of persistent contamina-
tion [8, 15].

Another typing scheme for L. monocytogenes 
is serogrouping, which reflects to a certain extent 
the virulence potential of individual strains. It 
is known that serovars 1/2a, 1/2b and 4b are re-
sponsible for about 90% of human infections [16]. 
Thirteen serovars described for L. monocytogenes 
are distinguishable by classical agglutination se-
rotyping method using antisera [17]. This method 
can be effectively replaced by a more con venient 
multiplex polymerase chain reaction (PCR) 
method originally developed by DOUMITH et al. 
[18] and improved by KÉROUANTON et al. [19]. 
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ewes’ milk production, and one (B) was a produc-
tion factory processing ewes’ lump cheeses pur-
chased from several sheepfarms in the region. The 
factories were situated in central Slovakia with 
a minimum distance from each other of approx. 
100 km, and were independent on each other. 
The samplings were performed 2 h after the end 
of a production run. From a total of 639 samples 
(Tab. 1), 499 environmental samples were col-
lected from different places along the production 
chain, 216 from food-contact areas and 283 from 
non-food-contact areas and equipment (includ-
ing cleaning rags, gloves, walls, floors, fly papers 
and feed), and 140 food samples of milk, raw 
mate rials, semi-products (ewes’ lump cheese) 
and final products were analysed. The sampling 
programme included sites of difficult sanitation 
and was focused on sites where L. monocytogenes 
was previous ly detected. Environmental swabs 
were collected using a sponge sampling kit (3M, 
St. Paul, Minnesota, United States) containing 
a sterile sponge moistened with buffered peptone 
water. The sponges were dragged back and forth 
in order to cover the area of 0.3 m2. To analyse raw 
materials, semi-products, final products, feed or 
water and brine samples, amounts of 25 g or 25 ml 
were collected. Disposable equipment, such as 
gloves or rags, were collected whole. Immediate-
ly after sampling, each sponge and samples were 
placed into indi vidual sterile bags, refrigerated 
and analysed within 24 h.

Microbiological detection and isolation
The detection of L. monocytogenes was per-

formed using a conventional culture-based method 
according to ISO 11290-1:1996/Amd 1:2004 [24]. 

The method involved a 24 h pre-enrichment in 
half-Fraser broth (Merck, Darmstadt, Germany) 
at 30 °C , 24 h and 48 h enrichment in Fraser broth 
(Merck) at 37 °C, and streaking of samples on 
chromogenic Agar Listeria according to Ottaviani 
and Agosti (ALOA) medium (Merck) in order to 
obtain well isolated colonies. From the positive 
samples, up to five presumptive L. monocytogenes 
typical blue-green colonies with opaque haloes 
were streaked for isolation on Tryptose Soy Yeast 
Extract Agar (TSYEA; Merck) plates. In the case 
of growth of a mixture of colonies with massive 
numbers of blue-green colonies without haloes 
(predominantly of other Listeria spp.), the step of 
isolation on ALOA was repeated. All strains were 
maintained in 20% glycerol solution and freeze-
dried for long-term storage at –18 °C.

Real-time PCR identification
To confirm L. monocytogenes identity, species-

specific real-time PCR targeting actA gene [25] 
was used. DNA was extracted from 18 h culture 
in Tryptose Soy Yeast Extract Broth (TSYEB; 
Merck) by using QIAamp DNA MiniKit (Qiagen, 
Hilden, Germany). Typical colonies with halo, 
which were negative by PCR for actA and prfA 
genes [26], were tested by PCR specific for 
L. ivanovii [27]. Isolates identified as L. monocy-
togenes were subjected to molecular characteriza-
tion by molecular serogrouping, PFGE and detec-
tion of EC markers.

Molecular serogrouping
Multiplex gel-based PCR, originally devel-

oped by DOUMITH et al. [18], targeting serotype-
specific marker genes, modified and improved by 

Tab. 1. Samples analysed and detected positive for L. monocytogenes.

2011 2012 2013 2014 TOTAL

Number of samples

Analysed Positive Analysed Positive Analysed Positive Analysed Positive Analysed Positive

Environmental samples

Factory A 34 0 107 1 46 6 31 1 218 8

Factory B 23 1 90 0 55 5 37 1 205 7

Factory C – – – – 39 2 37 1 76 3

Subtotal 57 1 197 1 140 13 105 3 499 18

Samples from products

Factory A 20 0 17 0 13 0 8 0 58 0

Factory B 21 1 35 1 9 0 6 0 71 2

Factory C – – – – 6 0 5 0 11 0

Subtotal 41 1 52 1 28 0 19 0 140 2

TOTAL 98 2 249 2 168 13 124 3 639 20
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KÉROUAN TON et al. [19], was used in order to clus-
ter L. monocytogenes strains in to five molecular 
serogroups IIa, IIb, IIc, IVa and IVb in agreement 
with serotypes 1/2a (3a), 1/2b (3b, 7), 1/2c (3c), 
4a (4c) and 4b (4ab, 4d, 4e), respectively. Detec-
tion of flaA gene complemented the method and 
facilitated resolution of IIa and IIc serogroups. 
The protocol was modified by using LIP1 and 
LIP2 primers for prfA gene marker [26] specific 
for L. monocytogenes instead of prs gene marker 
for all Listeria spp. strains. DNA for the analyses 
was prepared from overnight cultures in TSYEB 
using InstaGene Matrix (BioRad, Hercules, Cali-
fornia, USA) according to instructions for use of 
the ma nufacturer. PCR products were analysed by 
electrophoresis in 1.5% agarose gel stained with 
GelRed (Biotium, Hayward, California, USA).

Pulsed-field gel electrophoresis
Isolates were analysed using PFGE protocol 

with AscI restriction enzyme [28] with modifi-
cations according to the last updated Standard 
Oper ating Procedure for PulseNet PFGE of 
Listeria monocytogenes [29]. After DNA extraction 
according to the protocol, the prepared agarose 
plug slices were digested by restriction enzyme 
AscI (New England BioLabs, Ipswich, Massachu-
setts, USA). Electrophoresis was performed in 
1.5% SeaKem Gold agarose (Lonza, Rockland, 
Maine, USA) in CHEF Mapper III (BioRad) 
with Salmonella ser. Braenderup H9812 digest-
ed by XbaI as a size reference standard. Run-
ning pa rameters were as follows: voltage gradient 
6 V·cm-1, angle 120°, temperature 14 °C, initial 
switch 4 s, final switch 40 s, duration 18.5 h. Gels 
were stained in 0.01% ethidium bromide (Serva, 
Heidelberg, Germany) solution and visualized by 
UV transillumination. Up to five L. monocytogenes 
colonies from individual samples were analysed in 
order to check their identity and, in case of iden-
tity, one representative was selected. In the case 
that more than one PFGE profile of isolates from 
the same independent sample were obtained, all 
individual profiles were involved in further inves-
tigation. The PFGE AscI-patterns of the selected 
isolates were analysed by BioNumerics software 
(Applied Maths, Kortrijk, Belgium). The levels of 
similarity between AscI patterns were calculated 
using Dice’s coefficient with a band tolerance of 
1.0%. Cluster analysis was performed by the un-
weighted pair group method with average linkages 
(UPGMA).

Detection of epidemic clones 
Detection of genetic markers for ECI, ECII 

and ECIII was performed by multiplex PCR 

previous ly described by CHEN and KNABEL [30]. 
Two isolates belonging to molecular serogroup 
IVb were screened for ECI and ECII (associated 
with serotype 4b), while 16 isolates belonging to 
molecular serogroup IIa were screened for ECIII 
(associated with serotype 1/2a).

RESULTS AND DISCUSSION

Detection and prevalence of L. monocytogenes
The panel of 639 collected and analysed sam-

ples was represented by 499 (78%) environmen-
tal samples and 140 (22%) food product samples. 
From the environmental samples, 216 (42%) were 
collected from food-contact surfaces and 283 
(58%) from non-food-contact surfaces and equip-
ment. The prevalence of L. monocytogenes in the 
samples from the three ewes’ milk processing fac-
tories A, B (from 14 samplings each) and C (from 
8 samplings) is summarized in Tab. 1.

Out of all analysed samples, 20 (3.1%) were 
found to be positive for L. monocytogenes, in most 
samples being in mixture with other, predominant 
Listeria species. Potentially pathogenic L. ivanovii 
was detected in two samples, while other Listeria 
spp. in 309 (48.4%) samples. In some cases, posi-
tive L. monocytogenes detection by PCR from en-
richment in Fraser broth were in discrepancy with 
negative detection of typical colonies on ALOA 
medium, due to the presence of a mixture of Lis-
teria spp. Even after the repeated isolation by 
streaking on ALOA medium, no typical L. mono-
cytogenes colonies could be observed. Similar prob-
lems with underestimation of L. monocytogenes by 
traditional microbiological analysis were reported 
by ALESSANDRIA et al. [31] and DALMASSO et al. 
[32] investigating the occurrence of L. monocy-
togenes in dairy processing factories.

Among 20 positive samples, 18 (3.6% from 
499 analysed) were associated with production 
environment including four product-contact and 
14 non-product-contact surfaces and equipment. 
Only two samples of food products (1.4% from 
140 analysed) were positive, namely, one sample 
of bryndza (final product) and one sample of ewes’ 
lump cheese (semi-product).

According to the presented results, sporadic 
L. monocytogenes contamination was observed in 
all three factories. The levels of contamination 
ranged from 2.8% to 3.4%, with 90% of positiv-
ity associated with environmental samples. The 
prevalence of L. monocytogenes in all three fac-
tories was very low, particularly in comparison 
with the results published by other researchers, 
7.1% [16] or 19.5% [33]. Higher prevalence 
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was observed by WAGNER et al. [34], who iso-
lated L. monocytogenes from 50 small factories in 
Austria at a prevalence of 27.6%, and by SPANU 
et al. [35], who isolated L. monocytogenes from the 
environment of 12 ewes’ cheese-producing plants 
in Italy at a prevalence ranging between 3.0% and 
22.6%.

Molecular analysis of serogroups, 
linages and epidemic clones

By molecular serotyping, L. monocytogenes 
isolates were classified into three serogroups, 
with the majority of strains falling in serogroup 
IIa (80%), followed by serogroups IIc (10%) and 
IVb (10%). Regarding the classification of line-
ages, 90% of strains represented lineage II (sero-
groups IIa and IIc) and 10% lineage I (serogroup 
IVb) (Tab. 1). Markers specific for three epidemic 
clones (ECI–ECIII) of L. monocytogenes were in-
vestigated with negative results for all analysed 
strains.

The results obtained in our survey are in agree-
ment with observations in other European coun-
tries, where L. monocytogenes strains of lineage 
II and serotype 1/2a were the most frequently 
iso lated from dairy products and from factory 
environments [9, 35, 36]. On the other hand, 
85 L. monocytogenes isolates from cheese manu-
facturing plants in São Paulo, Brazil, were classi-
fied to serotypes 1/2b, 1/2c and 4b, with predomi-
nance of serotype 4b [13].

PFGE typing
Analysis of PFGE AscI patterns of 20 L. mono-

cytogenes isolates resulted in strain discrimina-
tion into 14 clusters at a similarity level of 100%, 
and into 11 clusters at a similarity level of 90% 
(Fig. 1). At the similarity level of 90%, two clusters 
of similar types (ST) of profiles 3 (four isolates) 
and 14 (three isolates) were identified. These ST 
PFGE patterns presented less than three bands 
difference per profile, and could be therefore con-
sidered as closely related according to the “3-band 
rule” [37]. At the level of 50% similarity, most of 
strains were grouped into one main cluster, only 
two strains of serogroup IVb and three identical 
IIa strains (profile 7) were outliers. Dendrogram 
of PFGE profiles, complemented with relevant 
data on isolates identity, factory, sampling date, 
sampling site, location, material or product, and 
results of serogrouping and AscI profile indica-
tion, are given in Fig. 1.

Diversity and tracing of L. monocytogenes isolates
PFGE profiling was used to determine the ge-

netic variability of isolates, and to trace the con-

tamination in the factories. In fact, the strains 
with the same PFGE profiles repeatedly isolated 
from the same place at subsequent samplings over 
a longer period could be considered potentially 
persistent. However, no evidence of persistent 
strains was observed in our survey. According to 
the results obtained in all three cheese-processing 
factories, accidental incidence of L. monocytogenes 
of a relatively high strain diversity suggested that 
there were random external sources of contamina-
tion. 

The dendrogram of PFGE profiling (Fig. 1), 
clusters of strains of AscI profile 3, 7 or 14 iso-
lated from different samples and from different 
locations, indicate the spread of certain biotypes 
in the environment of two factories. This suggests 
a wide distribution of the pathogen in the natural 
environment. Our results suggest that some PFGE 
types may be associated with a single source, 
whereas other PFGE types may be disseminated 
wider or even globally [38].

CONCLUSION

Listeria monocytogenes is a food-borne patho-
gen with significant public health and economic 
impact. Since it can persist in the production envi-
ronment and cross-contaminate food products, the 
pathogen is of great concern for food producing 
companies. For the purpose of tracing L. mono-
cytogenes in the food production environment, to 
reveal the character, sources and routes of con-
tamination, appropriate analytical methods with 
sufficient discrimination power need to be used, 
such as molecular typing methods. In our survey, 
low and sporadic contamination of three small and 
medium-sized milk processing factories was de-
tected. By application of PCR serogrouping and 
PFGE typing to L. monocytogenes isolates, high 
strain diversity was determined, which suggested 
that the contamination originated from the exter-
nal environment.
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