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Mulberry is a native fruit of Asia and is mainly 
produced in China. Mulberry fruits are very rich 
in polysaccharides and phytochemical compounds 
such as phenolics, flavonoids and anthocyanins [1]. 
The fresh fruits are not available all year round 
and they are generally processed into jam, pulp, 
beverage and wine [2].

Currently, wine consumers are more con-
cerned about the quality of products, they buy and 
demand products that are rich in natural bioactive 
compounds [3], have a specific aroma and colour, 
which are important parameters for wine [4]. Ma-
ceration process is one of the key steps during 
juice and wine processing, and it can affect the 
final quality of the product. During the process, 
enzymes rich in polygalacturonase, pectin ester-
ase, cellulase and hemicellulase are commonly 
used in juice processing and winemaking during 
the maceration process [5]. These ma ceration 
enzymes could improve the yield of juice, phyto-
chemical compounds and colour extracted [6]. 
Moreover, they could release more volatile aroma 
compounds such as alcohols, esters and alde-

hydes according to their glycosidase activity [7]. 
However, some studies reported a negative effect 
of some maceration enzymes on phytochemical 
compounds and the content of volatiles [8, 9]. Ma-
ceration enzymes can hydrolyse phytochemical 
compounds, change their profile and affect the 
quality of the product [10, 11]. Hence, the deter-
mination of quality parameters of the must, which 
are mostly affected by maceration enzymes, is im-
perative.

The aim of this study, therefore, was to inves-
tigate the effect of enzymatic treatment on phy-
tochemicals (total phenolics, total flavonoids and 
total anthocyanins) and on volatile compounds of 
mulberry must. In addition, chromatic properties 
were also considered.

MATERIALS AND METHODS

Chemicals
The standard of n-alkanes (C5–C25) was ob-

tained from Anpel Scientific Instrument (Shang-
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H° = arctan(b*/a*) (2)

where a* is redness/greenness and b* is yellow-
ness/blueness

Browning index
Browning index (BI) was measured using the 

method of MEYDAV et al. [12] and calculated ac-
cording to BUGLIONE and LOZANO [13] as follows: 

BI = A520/A420 (3)

where A520 is absorbance at 520 nm, and A420 is 
absorbance at 420 nm.

Total phenolics concentration
Total phenolics concentration (TPC) was de-

termined by the Folin-Ciocalteu method [14] using 
gallic acid as a standard. TPC was expressed as 
grams of gallic acid per litre. 

Total flavonoids concentration
Total flavonoids concentration (TFC) was 

measured by the aluminium chloride colorimetric 
assay [15] using rutin as a standard. TFC was ex-
pressed as grams of rutin per litre. 

Total anthocyanins concentration 
Total anthocyanins concentration (TAC) was 

determined by the pH differential method and 
calculated as cyanindin-3-glucoside [16]. TAC was 
expressed as grams per litre.

Volatile extraction
Volatile compounds were extracted with 

a headspace solid-phase microextraction method 
as described by BUTKHUP et al. [2]. The 2 cm long, 
50/30 μm divinylbenzene/carboxen/polydimethylsi-
loxane (DVB/CAR/PDMS) stable Flex fibre (Su-
pelco, Bellefonte, Pennsylvania, USA) was used 
for the extraction. A 15 ml vial containing 5 ml of 
sample, spiked with 50 μl of 3-octanol (800 μg.l-1), 
was used as the internal standard. NaCl (1.5 g) was 
added to increase the volatility of flavour com-
pounds. The vials were tightly closed with a sili-
cone septum and equilibrated at 40 °C for 10 min 
with constant stirring (12.5 Hz). The fibre was 
then extended through the needle and exposed to 
the headspace above the sample for 30 min. After 
extraction, the fibre was inserted into the injection 
port of the gas chromatograph (250 °C) for 5 min 
to desorb the analytes. 

Gas chromatography-mass spectrometry (GC-MS)
Samples were analysed using an Agilent 

6890N- 5973B GC-MS instrument (Agilent, 
Wil mington, North Carolina, USA), equipped 

hai, China). 3-Octanol was purchased from Tokyo 
Chemical Industry (Tokyo, Japan). Gallic acid 
and rutin were purchased from J&K Scientific 
(Beijing, China), the purity was 99%. Folin–Cio-
calteu phenol reagent was obtained from Shanghai 
Labaide Biotechnology (Shanghai, China). All 
other chemicals were of reagent grade and were 
purchased from Sinopharm Chemical Reagent 
(Beijing, China).

Plant material
The material used in this study was ripe mul-

berry (Morus nigra var. Zhen Jiang mulberry No. 1) 
harvested in Zhenjiang farms (China). The fruits 
were washed and stored at –20 °C until the experi-
ments.

Maceration and enzyme treatment 
Frozen mulberry (2.5 kg) was thawed for 8 h 

at 4 °C before mashing for 45 s using a house-
hold blender. Ascorbic acid (0.5 g·kg-1) was add-
ed immediately after mashing to inhibit oxidative 
browning. Must was divided into 8 lots (300 g 
each) and treated separately with different mace-
ration enzymes: Lafase Fruit (LF, Laffort, Bor-
deaux, France), Lafase HE GC (LHG, Laffort) 
and Novarom Blanc (NB, Novozymes, Bagsvaerd, 
Denmark) at the average dosage recommended 
by the manufacturers in a range of 30–1000 g per 
kilogram of must; and Pectinex USP-L (PUL, 
Novozymes), Pectinex UF (PUF, Novozymes), 
Pectinex Ultra Colour (PUC, Novozymes) and 
Klerezyme 150 (K150, DSM, Heerlen, the Neth-
erlands) at the average dosage of 0.01–0.03 l per 
kilogram of must. Control was not added any en-
zyme. Treated samples were incubated in an or-
bital shaker (IS-RDD3, Crystal Technology and 
Industries, Jiangsu, China) at 20 °C for 1 h with 
continuous shaking (3 Hz). After incubation, 
musts were centrifuged (Anke GL-20B, Shanghai 
Anting Scientific Instrument Factory, Shanghai, 
China) at 4224 × g for 15 min at 4 °C. The super-
natant was filtered through a cheesecloth and 
stored at –20 °C until analysis.

Colour measurement
The colour parameters were measured by 

a ColourQuest XE (Hunter lab, Reston, Vir-
ginia, USA), with illuminant D65 and 10° observer 
angle in the total transmission mode. The colori-
meter was calibrated using a white standard tile 
(L* = 99.1, a* = –0.17, b* = –0.07). The CIELAB 
parameters chroma (C*) and the hue angle (H°) 
were calculated from CIELAB a* and b* coordi-
nates using the following formulas:

C* = (a*2 + b*2)1/2 (1) 
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with a capillary column Agilent J&W DB-WAX 
122-7062 (60 m, 0.25 mm, 25 μm). Carrier gas 
was helium (1 ml·min-1), ion source tempera-
ture was set at 230 °C, quadrupole at 150 °C. The 
oven temperature was held at 50 °C for 10 min. 
It was raised at 6 °C·min-1 to 150 °C, followed by 
an increase of temperature to 200 °C at a rate of 
8 °C·min-1. Then the temperature was held at 
200 °C for 7 min. Injector port temperature was 
250 °C. Injection mode was splittless. Energy 
ionization was 70 eV. An electron ionization mass 
spectrum was acquired over the m/z range from 33 
to 350, and the detector transfer line was 250 °C. 
The total run time was 39.92 min. Inlet pressure 
was 137 895.145 Pa with an average velocity of 
19 cm·s-1.

Compounds identification and semi-quantification 
Identification of compounds was done by 

comparing: (i) mass spectra of the samples with 
databases (NIST 2005 v. 2.0 libraries) using AM-
DIS 3.2 software (NIST, Gaithersburg, Maryland, 
USA), and (ii) retention indices of n-alkanes to 
those of the literature [17–33, 9, 34–63].

The retention indices were calculated as de-
scribed by BIANCHI et al. [64] using a mixture of 
n-alkanes (C5–C25) under the chromatographic 
conditions described previously. Semi-quantifica-
tion of the compounds was carried out by the in-
ternal standard method. 

Statistical analysis
All the analyses were run in triplicates, and 

the results are presented as means ± standard de-
viation. Tukey test (p < 0.05) was used to compare 
the means and correlation between chromatic 
properties, and phytochemical compounds were 
studied by means of Pearson correlation coef-
ficients using OriginPro version 9.0 (OriginLab, 
Northampton, Massachusetts, USA). Multivariate 

analysis was performed with Statistica version 10.0 
(StatSoft, Tulsa, Oklahoma, USA). Cluster analy-
sis was used to determine the similarities between 
mulberry must treated by different enzymes, while 
principal component analysis (PCA) was used 
to explain the variances observed in the overall 
proper ties of mulberry musts and to understand 
the relationship between the different parameters. 

RESULTS AND DISCUSSION

Chromatic properties

Lightness (L*)
Individual enzyme treatments were found 

to have none significant (p > 0.05) effect on L*, 
except for PUL, which had the highest value, as 
shown in Tab. 1. The slight differences between the 
samples may be due to oxidation rather than the 
enzymatic treatment as reported by OSZMIAŃSKI 
et al. [8, 65]. According to MIHALEV et al. [66], 
a large amount of ascorbic acid is required to in-
hibit polyphenol oxidase responsible for the oxida-
tion, which was not the case in this study.

Hue angle (H°)
The H° angle of the control was significantly 

different (p < 0.05) from enzyme-treated sam-
ples apart from PUF and LF, as shown in Tab. 1. 
Almost all treated samples had H° values signifi-
cantly higher than the control, except for K150 and 
PUC. Based on Pearson correlation coefficients 
analysis (Tab. 2), H° was significantly correlated to 
b* (r = 0.76). It could be attributed to the enzy-
matic hydrolysis of the fruit pigment as described 
by SUN et al. [67].

Chroma (C*)
The C* values for treated samples were signifi-

cantly different from the control. The C* value of 

Tab. 1. Chromatic properties of mulberry musts.

Enzymes L* a* b* C* H° BI

Control 2.42 ± 0.01 e 16.35 ± 0.05 a 3.57 ± 0.03 ac 16.74 ± 0.05 b 12.33 ± 0.08 ac 1.49 ± 0.00 a

Lafase fruit 2.52 ± 0.02 abf 16.89 ± 0.05 b 3.78 ± 0.01 b 17.31 ± 0.04 a 12.61 ± 0.06 ab 1.12 ± 0.01 d

Lafase HE GC 2.50 ± 0.04 acg 16.56 ± 0.10 c 3.93 ± 0.03 e 17.02 ± 0.09 c 13.34 ± 0.16 d 1.31 ± 0.01 e

Pectinex USP-L 2.29 ± 0.01 d 15.49 ± 0.01 d 3.53 ± 0.04 ad 15.88 ± 0.01 d 12.85 ± 0.15 b 1.46 ± 0.00 b

Pectinex UF 2.65 ± 0.02 h 17.61 ± 0.01 e 3.82 ± 0.03 b 18.02 ± 0.02 e 12.25 ± 0.09 c 1.48 ± 0.01 ab

Pectinex Ultra Colour 2.54 ± 0.03 bc 17.05 ± 0.03 f 3.33 ± 0.03 f 17.37 ± 0.02 a 11.06 ± 0.11 e 1.38 ± 0.01 c

Novarom Blanc 2.33 ± 0.01 d 15.31 ± 0.05 g 3.61 ± 0.01 cd 15.73± 0.05 f 13.25 ± 0.08 d 1.37 ± 0.01 c

Klerezyme150 2.46 ± 0.02 efg 15.87 ± 0.02 h 3.17 ± 0.02 g 16.19 ± 0.02 g 11.28 ± 0.05 e 1.12 ± 0.00 d

The same letter in the same column indicates that the difference of the means is not significant at the level of 0.05%.
L* – Lightness, a* – redness, b* – yellowness, C* – chroma, H° – hue angle, BI – browning index.
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the control was significantly higher than NB, PUL 
and K150 (Tab. 1). The C* for all samples was sig-
nificantly correlated to a* and L* (r = 0.998 and 
r = 0.942, respectively), which were also signifi-
cantly correlated to each other (r = 0.948). This 
implied that the addition of ascorbic acid tended 
to inhibit the polyphenol oxidase-catalysed oxida-
tion, which affects the colour of the sample [66].

Phytochemical compounds

Total phenolics concentration
TPC of mulberry must was affected by enzy-

matic treatments and varied depending on the 
enzyme used (Tab. 3). Activity of all the enzymes 
caused a significant increase in TPC, while LF and 
K150 had a negative effect, similar to the of SAN-
DRI et al. [11]. This might be due to the specific 
characteristics of these enzymes regarding hydro-
lysis of pectin and influence on procyanidins [65], 
which are major polyphenols of mulberry fruit 

[68]. As shown in Tab. 2, the relationship between 
BI and TPC was significant (r = 0.731). JIANG [69] 
reported that the presence of phenolic compounds 
strongly stimulated oxidation of the pigment by 
polyphenol oxidase, leading to the development of 
brown pigments.

Total flavonoids concentration
The enzymatic treatment of the mash by LF, 

LHG, NB and K50 caused an increase in TFC of 
mulberry must. No significant effect was observed 
after PUF, PUL and PUC treatment (Tab. 3). 
According to SUN et al. [70], enzymes from As-
pergillus niger have a lower rutinase activity and 
some of them can degrade rutin to quercetin, but 
not in a significant manner. TFC had a significant-
ly negative correlation with BI (r = –0.785), which 
indicated that flavonoids were degraded or little 
affected by oxidative enzymes, similar to data re-
ported previously [71].

Tab. 2. Pearson’s correlation coefficients of chromatic properties 
and phytochemical compounds of mulberry musts.

L* a* b* C* H° BI TPC TFC TAC

L* 1 0.94789 a 0.27106 0.94244 a –0.39312 –0.12244 0.09313 –0.13413 –0.39264

a* 1 0.36155 0.99812 a –0.32898 0.05997 0.15345 –0.39985 –0.53467

b* 1 0.41785 0.76056 a 0.19735 0.26994 –0.11554 –0.05295

C* 1 –0.27087 0.06879 0.1646 –0.39383 –0.52291

H° 1 0.18978 0.19482 0.13045 0.29668

BI 1 0.73099 a –0.7852 a 0.5610

TPC 1 –0.42947 0.01874

TFC 1 0.40148

TAC 1

a – Correlation significant at the level of 0.05%.
L* – Lightness, a* – redness, b* – yellowness, C* – chroma, H° – hue angle, BI – browning index, TPC – total phenolics concen-
tration, TFC – total flavonoids concentration, TAC – total anthocyanins concentration.

Tab. 3. Concentrations of phytochemical compounds  in mulberry musts.

Enzymes TPC [g·l-1] TFC [g·l-1] TAC [g·l-1]

Control 2.318 ± 0.01 g 3.486 ± 0.04 abd 0.524 ± 0.00 a

Lafase fruit 2.098 ± 0.02 h 4.660 ± 0.06 h 0.442 ± 0.00 b

Lafase HE GC 2.618 ± 0.03 abd 5.024 ± 0.11 g 0.555 ± 0.00 c

Pectinex USP-L 2.618 ± 0.02 ace 3.628 ± 0.12 ace 0.529 ± 0.00 a

Pectinex UF 2.768 ± 0.02 i 3.587 ± 0.09 bcf 0.497 ± 0.00 d

Pectinex Ultra Colour 2.661 ± 0.03 bcf 3.648 ± 0.09 def 0.440 ± 0.00 b

Novarom Blanc 2.602 ± 0.02 def 5.085 ± 0.06 g 0.515 ± 0.00 e

Klerezyme150 2.173 ± 0.03 j 5.652 ± 0.07 i 0.559 ± 0.00 c

The same letter in the same column indicates that the difference of the means is not significant at the level of 0.05%.
TPC – total phenolics concentration, TFC – total flavonoids concentration, TAC – total anthocyanins concentration.
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Total anthocyanins concentration
The enzymatic treatment with PUL, LF, PUF 

and NB had a negative effect on TAC (Tab. 3). 
This could be attributed to the fact that enzymes 
from Aspergillus niger group have -galactosidase, 
-arabinosidase and/or -glucosidase activities, 
which can affect selected anthocyanin pigments in 
fruit juices [72]. No significant effect was observed 
with PUL, whereas LHG and K50 had a posi-
tive effect, causing an increase in TAC. A similar 
observation was made by other researchers [73, 
74]. A positive correlation between TAC and BI 
(r = 0.561) suggests that anthocyanase activity 
of enzymes has an effect on anthocyanins [74] by 
breaking the bond between glucose and antho-
cyanin to form anthocyanidins [75]. Their deg-
radation products are potential substrates for 
polyphenol oxidase [76].

Volatile composition
Data on profiles of volatile compounds of mul-

berry musts are presented in Tab. 4. A total of 
67 compounds were identified and quantified in 
the volatile fraction of untreated and enzymati-
cally treated musts. The quantified volatiles were 
grouped into seven groups, including 5 acids, 
25 alcohols, 2 alde hydes, 26 esters, 5 hydrocar-
bons, 1 ketone and 3 phenols.

Acids
Isovaleric acid was identified to be the major 

fatty acid (accounting for 94.4%). Enzymatic treat-
ment tended to increase the release of fatty acids 
(butanoic acid, hexanoic acid and octanoic acid). 
Indeed, polygalacturonase enzymes according to 
their specificity (endo- or exo-polygalacturonases) 
hydrolyse fruits in different ways and may affect 
fatty acid composition, which differ in biosynthetic 
pathways among the fruit tissues. The presence 
of short-chain organic acids (C2–C8) considered 
as a potential precursor of volatile aroma-active 
compounds [77] had a significant contribution to 
the global aroma because of their low perception 
thresholds and also to harsh aromas [78].

Alcohols
As indicated in Tab. 4, quantitatively, the most 

abundant compounds for all samples were aliphat-
ic alcohols, which accounted for 47.5% of the total 
volatile component. Among the alcohols, ethanol 
was predominant (82.3%). Ten aliphatic alcohols 
were present in all samples (etanol, 1-propanol, 
2-butanol, 2,3-butanediol, 2-methyl-1-propanol, 
2-methyl-1-butanol, 3-methyl-1-butanol, benzyl 
alcohol, phenylethyl alcohol and terpene-4-ol). 
Maceration enzymes, in addition to their main ac-

tivities, possess other enzyme “side activities”, in-
cluding glycosidases, which differ largely as a func-
tion of their pectinase activities. These enzymes 
can hydrolyse the aglycone moieties of glycosides 
and have an impact on the release of aliphatic al-
cohols according to the saccharides moiety of the 
substrates [79]. This may explain the variation of 
seventeen other alcohols identified. As reported 
by CABAROGLU et al. [80], the use of exogenous 
glycosidase can thereby accelerate the forma-
tion of odour-active volatiles. In most cases, the 
amounts of herbaceous alcohols are affected by 
the enzymatic treatment [81].

Aldehydes
Aldehydes are common in the flavour of fruits 

and are believed to play an important role in many 
fruits. For this reason, it was surprising to observe 
only two aldehydes (acetaldehyde and benzalde-
hyde), and these represented only 2.1% of the to-
tal volatile compounds. This result is in agreement 
with those reported by SAMAPPITO and BUTKHUP 
[82]. It was noted that LF and LHG had a negative 
effect on acetaldehyde, probably due to cellulosic 
activities of these enzymes, which can reduce alde-
hydes to their corresponding alcohols [83].

Esters
The major aroma-active compounds identi-

fied in this study were esters, which represented 
36.3% of all the volatile compounds. This result 
agrees with KALUA and BOSS [84], who reported 
that esters were the major volatiles characteristic 
for berries. Ethyl acetate, ethyl lactate, ethyl 2-hy-
droxyhexanoate and diethyl succinate were the 
major esters found in high concentration. Several 
aliphatic esters (ethyl 2-methylbutanoate, ethyl 
pentanoate, ethyl decanoate, ethyl tetradecanoate 
and others), which are important flavour contribu-
tors [85, 86], were released by enzymatic treatment 
and they provided more floral, cherry, stone-fruit 
and dryplum aroma [86]. However, due to esterase 
activities, some enzymes could induce the cleavage 
of esters [83]. This may explain the disparity of the 
eleven esters (methyl acetate, ethyl propanoate, 
ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, 
ethyl pentanoate, isoamyl lactate, ethyl 9-de-
cenoate, diethyl pentanedioate, ethyl octanoate, 
ethyl decanoate and ethyl dodecanoate).

Other groups of aroma-active compounds
As mentioned previously, maceration enzymes 

can hydrolyse pectin in different sites, which 
affects the hydrocarbon composition (dodecane, 
tridecane, tetradecane, pentadecane and nonade-
cane) and produce significant volatile compounds 
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[87]. Enzymatic treatment was found to 
have a negative impact on ketones (3-hy-
droxy-2-butanone) and volatile phenols 
(4-methyl-2-methoxy phenol, 2-methoxy-
phenol and 2,4-Di-tert-butylphenol).

Multivariate Analysis
Cluster analysis

In order to evaluate the effect of enzy-
matic treatment on the release of volatile 
compounds, cluster analysis was carried 
out to find data grouping among different 
treatments. Ward’s method and Euclidean 
distances were selected as the measure of 
similarity. Groups of compounds were used 
as classifying variables (Fig. 1). 

The dendrogram allowed the identifica-
tion of various groups of enzymatic treat-
ments. The first great division in groups A 
and B separated musts according to their 
total volatile concentration. Group A con-
sisted of musts treated with CON and PUF, 
which had in common a high concentra-
tion of volatile aroma. It also contained 
musts with high concentrations of ethanol, 
2-methyl-1-butanol, ethyl lactate, and high 
concentrations of alcohols. Group B was 
constituted by musts that had a low con-
centration of acids. This group was split 
into two subgroups: subgroup C (K150), 
which was characterized by the presence 
of 2-butyl-1-octanol, and lowest concen-
trations of acids, esters and aldehydes. 
Subgroup D was also divided into two sub-
groups: E (LF and LHG), characterized 
by the absence of acetaldehyde, dodecane, 
tridecane and 2-methoxyphenol, and sub-
group F, which had a moderate concentra-
tion of alcohols and acids. Group H (NB) 
was characterized by 3-methyl-1-pentanol, 
and high concentrations of 2,3-butane-
diol and ethyl 2-methylbutanoate. Group F 
could be differentiated from group G (PUL 
and PUC) on the basis of the presence of 
3-hydroxy-2-butanone. It is noteworthy that 
similar subgroups E and G were constituted 
by musts tretaed with enzymes supplied by 
the same company. This means that these 
enzymes produced musts that had a similar 
basic volatile composition.

Principal component analysis
To highlight the effect of the enzymatic 

treatment, PCA was performed on all para-
meters (Fig. 2A). The portion of 88.7% of 
the total variance could be explained by the 
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first four principal components (PC). Individual 
components were responsible for 44.0%, 19.2%, 
14.3% and 11.2%, respectively. Loading values 
> 0.60 of the chromatic properties, phytochemical 
compounds and volatile compounds are marked 
throughout Tab. 5.

As presented in Tab. 5, the evaluated para-
meters indicated that PC1 strongly correlated with 
the volatile composition, TFC and BI. PC2 (L*, 

a*, c*) and PC4 (b* and H°) were mainly linked 
with colour properties. The correlation of phyto-
chemical compounds (TPC and TAC) was shared 
between PC1 and PC2. Nevertheless, aldehydes 
were not negligible in PC3.

Mulberry musts were divided into four groups, 
according to the correlation between enzyme 
treatments (scores) and their properties (loadings) 
as shown in Fig. 2B. The first group was on the 
positive side of PC1 and PC2, and on the negative 
side of PC4. It included control and PUC, which 
were characterized as having a high concentration 
of volatile compounds (esters and aldehydes), and 
middle values of colour properties L* and C*.

Mulberry musts situated on the negative side 
of PC1 and PC4, and on the positive side of PC2 
formed the second group, containing PUL and 
K150. These were described by middle values of 
their colour properties a* and b*, and lower con-
centrations of volatile phenols. 

The third group was characterized by the 
lowest concentration of volatile compounds, high 
concentration of phytochemical compounds (TAC 
and TFC), lower BI and colour properties (b* and 
H°). It was situated on the negative side of PC1 
and on the positive side of PC2, represented by 
K150. This third group was represented by NB, LF 
and LHG, which could be split into two subgroups 
based on their correlation between PC4 (NB) 
and PC1 (LF and LHG). It is noteworthy that the 
musts treated with LF and LHG, which were ob-

Fig. 2. Principal component analysis of mulberry musts.

A – Loadings plot, B – Scores scatter plot.
L* – Lightness, a* – redness, b* – yellowness, C* – chroma, H° – hue angle, BI – browning index, TPC – total phenolics concen-
tration, TFC – total flavonoids concentration, TAC – total anthocyanins concentration, CON – control. 
Maceration enzymes: LF – Lafase fruit, LHG – Lafase HE GC, PUL – Pectinex USP-L, PUF – Pectinex UF, PUC – Pectinex Ultra 
Colour, NB – Novarom Blanc, K150 – Klerezyme150.

Fig. 1. Dendrogram of cluster analysis 
of groups of volatile compounds.

Dendrogram represents Euclidean distances as results of 
Ward’s method application.
CON – control. Maceration enzymes: LF – Lafase fruit, LHG 
– Lafase HE GC, PUL – Pectinex USP-L, PUF – Pectinex UF, 
PUC – Pectinex Ultra Colour, NB – Novarom Blanc, K150 – 
Klerezyme150.
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tained from the same manufacturer, had similar 
colour properties (L*, a* and C*) and volatile 
composition (alcohols and esters).

The last group, formed by PUF, was situated 
on the positive side of PC1, PC2 and PC4, being 
cha racterized by the highest concentration of 
volatile compounds (alcohols and acids), highest 
colour property values (L*, a* and C*) and the 
highest concentration of TFC, but had the highest 
BI values.

CONCLUSION

Enzymatic treatment of mulberry must had 
significant effects on chromatic properties, phy-
tochemical compounds and volatile aroma com-
pounds in the mulberry must. The commercially 
available enzymes, which are widely used in the 
maceration process, had an effect on the concen-
trations of volatile compounds, phytochemical 
compounds and chromatic properties. Indeed, 
some enzymes released more phytochemical com-
pounds and/or more volatile compounds, whereas 
others could give better colour parameters. There-
fore, the quality of the final product depends on 
the choice of the enzyme.
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