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Milk and infant formula adulteration have 
been of high concern for a long time, especially 
after the global food safety scares caused by mela-
mine adulteration in 2008 [1–3]. In 2011, it was 
reported that a new type of adulterant, hydrolysed 
leather protein (HLP), was intentionally added 
into dairy products by some illegal factories, in 
order to boost the apparent protein content [1, 4]. 
HLP is collagen that is extracted from leather 
scraps. As an adulterant in dairy products, it may 
cause a great risk for osteoporosis and heavy metal 
(Cr) poisoning, for the reason that a large amount 
of potassium dichromate and sodium dichromate 
are added during the tanning and dyeing process 
of leather.

Although HLP adulteration has drawn great 
attention from the Chinese government and con-
sumers, there are only a few scientific reports 
concentrating on the detection method of HLP 

in dairy products. Current analytical methods for 
detecting HLP are mainly chromatography-based 
methods [1, 5, 6], through detecting hydroxypro-
line (Hyp) as a marker of the collagen content. 
These methods are time-consuming, expensive, 
requiring complicated sample pre-treatment and 
well-trained technicians. Therefore, there is an 
urgent and increasing need to develop a quick, 
simple and economical method for detecting HLP 
in dairy products.

Near-infrared (NIR) spectroscopy is an ana-
lytical technique that has advantages in real-time 
response, simplicity in testing, relatively low-cost 
instrument, non-destructive and environmen-
tally friendly analysis. NIR spectroscopy has been 
widely used in numerous fields, such as nutrient 
content analysis in food industries [7–13], process 
monitoring in pharmaceutics [14], composition 
control in petroleum industries [15, 16] and also in 
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In order to improve the model robustness, 
samples in this work contained infant formula of 
three brands: Wyeth (Dallas, Texas, USA), Mead 
Johnson (Chicago, Illinois, USA) and Beingmate 
(Hangzhou, China) and their mixtures with ran-
dom proportions [21]. All the infant formulae 
were obtained from a local food safety supervision 
organization (Guangzhou Quality Supervision and 
Testing Institute, Guangzhou, China). HLP pow-
der was purchased from three producers: Kaitai 
(Beijing, China), Cargill (Hamburg, Germany) 
and AccoBio (Wuxi, China). Hyp powder was pur-
chased from Sigma (St. Louis, Missouri, USA). 

Adulteration contents of HLP ranged from 
1.0 g·kg-1 to 10.0 g·kg-1. All of the adulterated sam-
ples were well stirred before NIR spectroscopy 
measurements.

Near-infrared spectroscopy measurement 
The NIR spectra were acquired with a hand-

held NIR analyser DLP NIRscan Nano (Texas 
Instruments, Dallas, Texas, USA). The spectra 
ranged from 900 nm to 1 700 nm (11 00 cm-1 to 
5 880 cm-1) with the scanning resolution of 2.8 nm 
(18 cm-1). Sixteen diffuse reflectance scans were 
averaged for each spectrum. All of the measure-
ments were taken at room temperature (24–27 °C).

Data processing
In order to improve the calibration accuracy, 

the initial and terminal sections of 100 nm of the 
spectra were deleted because rather high instru-
ment noise could be observed at these regions. 
Therefore, the spectra ranging from 1 000 nm to 
1 600 nm were used for analysis. Prior to building 
the class and regression models, pre-treatment of 
first-order gap segment derivative followed by the 
multiplicative scatter correction and first deriva-
tive was applied for denoising.

Before class modelling, PCA was applied to 
evaluate the possibility of discrimination between 
pure infant formula and infant formula adulter-
ated with HLP. To improve the model accuracy 
and reduce the complexity of computing, PCs were 
extracted by PCA and then used as the input data 
of the LS-SVM classification model. In the PCA 
analysis and class modelling, half of the samples 
were used for calibration, while the others were 
used for validation.

In the part of quantitative analysis, 
PCs-LS-SVM and SWs-LS-SVM models were 
used to predict the content of HLP in adulteration 
samples. PCs-LS-SVM regression model utilized 
PCs extracted by PCA as input data, which was the 
same as in the classification model. On the other 
hand, SWs with higher absolute values of regres-

adulteration detection of dairy products [17, 18]. 
For instance, Mauer et al. detected melamine in 
infant formula on the basis of near- and mid-in-
frared (MIR) spectroscopy [19]. Borin et al. de-
tected starch, whey and saccharose adulteration in 
milk powder by NIR spectroscopy [20].

So far, quite a few efforts have been made on 
chemometric algorithms to achieve better de-
tection accuracy of dairy products adulteration. 
Balabin and Smirnov [21] compared several cali-
bration methods, including partial least squares 
regression (PLS), polynomial PLS, artificial neu-
ral network (ANN), support vector regression 
(SVR) and least squares support vector machine 
(LS-SVM) to detect melamine in dairy prod-
ucts. They found that the relationship between 
NIR/MIR spectrum of milk products and mela-
mine content was non-linear, and the non-linear 
regression methods (SVR, LS-SVR, ANN) had 
better predicted accuracy for melamine content. 
Support vector machine (SVM) is a  promising 
method proposed by Vapnik [22], which can per-
form non-linear classification and multivariate 
function estimation or non-linear regression. 
LS-SVM, proposed by Suykens et al. [23], is an 
optimized algorithm based on SVM, which ap-
plies a linear set of equations instead of quadratic 
programming used in standard SVM [24]. This can 
reduce the computational complexity as well as 
improve the predicted accuracy of the model. The 
combination of NIR spectroscopy and LS-SVM 
was used in food brand discrimination [25], 
nutrient content analysis [26–28] and several other 
applications [29, 30]. 

In the classification part, principal components 
(PCs) extracted by principal component analy-
sis (PCA) were used as the input of LS-SVM to 
establish the PCs-LS-SVM classification model.

In the regression part, two types of regression 
model were established and compared, namely, 
PCs-LS-SVM and sensitive wavelengths (SWs) 
LS-SVM. In these two methods, PCs extracted 
by PCA and SWs selected by PLS were used as 
the input data of the LS-SVM regression model, 
respectively. 

The present study aimed at evaluating the per-
formance of NIR spectroscopy and LS-SVM for 
HLP adulteration detection in infant formula.

Materials and methods

Samples
A total of 150 samples, including 60 pure infant 

formula samples and 90 adulterated samples, were 
analysed. 
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sion coefficients in PLS were selected and used 
as the input data in the SWs-LS-SVM regression 
model.

The root mean squared error of calibration 
(RMSEC) was used to evaluate the calibration 
results, while the root mean squared error of 
leave-one-out cross validation (RMSECV) was 
used to select parameters of the models, such as 
the number of PCs, the number of SWs, the ker-
nel function parameter σ2 and the regularization 
parameter γ in LS-SVM model. The root mean 
squared error of prediction (RMSEP) and the de-
termination coefficient of validation set (R2) were 
used to evaluate the prediction capacity of each 
regression model.

In this study, LS-SVM models performed in 
MATLAB R2015a (Math Works, Natick, Massa-
chusetts, USA). The free LS-SVM toolbox was ap-
plied with MATLAB to derive all of the LS-SVM 
models. The spectra pre-treatment, PCA and 
regression coefficients calculation were done in 
Unscrambler ver. 10.3 (CAMO, Oslo, Norway).

Least squares support vector machine
The LS-SVM algorithm is introduced as fol-

lows. LS-SVM maps the input data to a higher di-
mensional feature space:

𝑦𝑦(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥) + 𝑏𝑏 	 (1)

where w is the weight vector, and b is the bias. 
Then the optimization problem is to minimize 
a cost function (C):
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subjecting to the constraints:
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In Eq. 2, γ is the regularization parameter and 
ei is the random error. 

In LS-SVM algorithm, Lagrange function is 
used to solve this optimization problem:
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where αi is Lagrange multipliers named support 
value. In order to obtain the optimum, the partial 
first derivative of each variable was set to zero:
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It can be known from Eq. 5 that:
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Combining Eq. 1 with Eq. 6, the following re-
sult is obtained:
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The problem is converted into solving a set of 
linear equations:
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In Eq. 8, K is the kernel function that follows 
Mercer’s condition. Then the LS-SVM regression 
model can be written as:
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Commonly used kernel function includes radial 
basis function (RBF), polynomial functions and 
linear function. In this paper, RBF was chosen as 
the kernel function. It can be written as:

𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = exp �−�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
2 𝜎𝜎2� � 	 (11)

where σ2 is the bandwidth of the RBF function. 

In LS-SVM, the RBF kernel function pa
rameter σ2 and the regularization parameter γ 
should be selected carefully by the users because 
these two parameters play an important role in ob-
taining high model accuracy, meanwhile avoiding 
over-fitting.

Results and discussion

Classification modelling
The pre-treated spectra of samples adulterated 

with HLP are shown in Fig. 1. The pre-treatment 
method was the first-order gap segment derivative 
followed by the multiplicative scatter correction, 
which helped to eliminate the influence of base-
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line drift and particle scattering.
In this work, PCA was performed based on 

the pre-treated NIR spectra of 60 pure infant for-
mula samples and 90 samples adulterated with 
HLP. The aim of using PCA was to evaluate the 
potential of discrimination between authentic 
and adulterated samples, and to extract PCs as 
the input data of LS-SVM classification model. 
In the PCA analysis and subsequent class model-
ling, half of the samples were utilized as calibra-
tion sets, while the remaining half of them were 

assigned into validation sets. The first and second 
principal component scores are plotted in Fig. 2. 
PC1 and PC2 explain 56 % of the total variance. 
As shown in Fig. 2, the pure infant formula sam-
ples and samples adulterated with HLP exhibited 
obvious differences in PC2 and a potential of clus-
tering, although a particle overlap between these 
two classes could be observed. The contents of 
HLP in adulteration samples are marked by differ-
ent shades of gray in Fig. 2. However, as can be 
seen, the change of HLP contents with the change 
of PC2 was not obvious.

In LS-SVM, several crucial parameters need 
to be carefully selected, including the kernel func-
tion, the kernel function parameter σ2 and the 
regularization parameter γ, as well as the optimal 
input features. In this study, the non-linear kernel 
function RBF was selected, and the parameters of 
σ2 and γ were optimized by two-dimensional grid 
search. The grid search was performed on the ba-
sis of leave-one-out cross-validation and evaluated 
by the correct classification rate in cross-valida-
tion. 

Regarding input features, LS-SVM classifi-
cation model was built up with PCs extracted by 
PCA as input data. The number of PCs (1 to 15) 
was optimized through testing its influence on 
correct classification rate of leave-one-out cross-
validation. According to the results presented in 
Fig. 3, the cross validation achieved the best cor-
rect classification rate (100 %) with a number 
of PCs of 5. The first 5 PCs were selected as the 
inputs to build PCs-LS-SVM classification mod-
el, and the results are shown in Tab. 1. As can 
be seen in the table, for the calibration set and 
cross validation, the correct classification rates 
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Tab. 1. Correct classification rates of the least 
squares support vector machine classification model.

Calibration Cross-validation Prediction

Authentic 100 % 100 % 96.7 %

Adulterated 100 % 100 % 95.6 %



	 Detection of adulteration by hydrolysed leather protein in infant formula

	 287

the spectra to the same baseline. The loadings 
of PC2 between 1 392 nm and 1 450 nm are also 
shown as grey bars in Fig. 5B. It can be clearly 
seen that the difference spectrum of Hyp and 
the pure infant formula had a quite similar trend 
with the PC2 loadings in this region. Therefore, 
we deduced that the spectrum change between 
1 392  nm and 1 450 nm in adulterated samples 
could be mainly attributed to the presence of Hyp, 
and Hyp is also essential for detecting HLP in in-
fant formula by NIR spectroscopy.

Regression modelling
In the regression modelling approach, 120 sam-

ples, including 90 HLP adulterated samples and 
30  adulteration-free samples, were involved. 
Among these samples, 25 pure infant formula 
samples and 70 HLP adulterated samples were 

of authentic group and adulterated group were 
both 100 %, while, for the validation set, the cor-
rect classification rates of the authentic group and 
the adulterated group were 96.7 % and 95.6 %, 
respectively.

It can be observed from Fig. 2 and Fig. 3 that 
PC2 played an important role in detecting the 
presence of HLP. Loadings of each PC reflect 
how much the individual variable contributes to 
that PC. Therefore, loadings of PC2 (shown in 
Fig. 4) can be a potential indicator for important 
wavelengths. It can be seen in Fig. 4 that 
wavelengths between 1 392 nm and 1410 nm, and 
between 1 426 nm and 1 450 nm had large absolute 
values of PC2 loadings and should have been seen 
as of great importance.

HLP is a collagen extracted from leather scraps, 
and Hyp (C5H9NO3) is a unique component of 
collagen. It is often used as a marker of collagen 
content in traditional analytical methods. The con-
tent of Hyp in HLP is about 9 %. To understand 
what chemical composition determined the change 
of the important NIR band (1 392–1 450  nm), 
the average spectrum of pure infant formula, 
the average spectrum of pure HLP powder and 
the spectrum of Hyp powder were measured and 
shown in Fig. 5A. It can be observed that, in the 
important region between 1 392 nm and 1 450 nm 
(marked by grey vertical lines in Fig. 5A), the pure 
infant formula powder and the HLP powder had 
similar shape in spectrum, while the spectrum of 
Hyp powder showed different trend in this re-
gion. The difference spectrum of the Hyp and the 
pure infant formula (marked as Hyp – pure infant 
formula in Fig. 5B) was calculated after adjusting 
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used for calibration, while 5 pure infant formula 
samples and 20 samples adulterated with HLP 
were used for validation. The detailed information 
about the datasets utilized in regression modelling 
are presented in Tab. 2. In each regression model, 
RBF was adopted as kernel function, and the pa-
rameters of σ2 and γ were optimized by two-di-

mensional grid searches. The grid search was per-
formed by searching the appropriate σ2 and γ with 
minimized RMSECV. Nevertheless, the detailed 
process of grid search will not be discussed in this 
paper.

Quantification of adulterant contents in in-
fant formula was performed through two types of 
LS-SVM regression models: PCs-LS-SVM and 
SWs-LS-SVM. First, PCs extracted by PCA were 
used as the input data to build PCs-LS-SVM 
regression model. To keep consistent calibra-
tion/validation data partition with the regression 
modelling, PCA was rebuilt with 95 calibration 
samples and 25 validation samples. The number 
of PCs was optimized by evaluating RMSECV 
(Fig.  6). As can be seen in Fig. 6, both RMSEC 
and RMSECV decreased dramatically with the in-
crease of PC number from 1 to 4. However, when 
the PC number was greater than 4, RMSECV did 
not show prominent improvement and the dif-
ference between RMSEC and RMSECV increased 
obviously, which indicated overfitting. Therefore, 
the first 4 PCs were selected and the calibration 
and validation results were listed in Tab. 3. The 
RMSEC and RMSEP values of the PCs-LS-SVM 
regression model were 1.02 g·kg-1 and 1.46 g·kg-1, 
respectively.

For the SWs-LS-SVM model, SWs were used 
as the input data of LS-SVM. The regression 
coefficients of wavelengths were calculated by 
PLS, and adopted for determining the sensitive 
wavelength. The size of the regression coefficient 
represents the importance of X-variables on pre-
dicting Y-variable. The regression coefficients cal-
culated by PLS are shown in Fig. 7. Comparing 
Fig. 4 with Fig. 7, it can be seen that the loadings 
of PC2 and the regression coefficient curve had 
very similar shapes. Large positive regression co-
efficients (at 1 392–1 409 nm) indicated a strong 
positive correlation between the absorbance in 
spectra and the HLP content, while more nega-
tive regression coefficients implied a strong nega-
tive correlation (at 1 426–1 453 nm). Therefore, 
X-variables with large absolute values of regres-
sion coefficient were selected as SWs, and used as 
the input data of the LS-SVM regression model. 

Tab. 2.  Description of datasets used in the regression models.

Number of samples HLP content [g·kg-1]

Total Authentic Adulterated Range Mean SD

Calibration 95 25 70 0-10.0 4.1 3.5 

Validation 25 5 20 0-10.0 4.4 3.4

HLP – hydrolysed leather protein, SD – standard deviation.
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In this study, the number of SWs was optimized 
by cross-validation. According to the absolute 
values of correlation coefficient from large to 
small, the X-variables were realigned, before being 
input into the LS-SVM model. Different numbers 
of the most SWs were used to build SWs-LS-SVM 
regression models and evaluated by the RMSECV. 
Fig. 8 shows the effects of the SWs number on 
RMSEC and RMSECV. As can be seen in Fig.  8, 
RMSEC kept decreasing with the increase of 
SWs number, while the minimum RMSECV was 
achieved at a SWs number of 19 (also labelled in 
Fig. 7). Therefore, the 19 most SWs were selected 
as the input data.

The regression results and curve of the 
SWs-LS-SVM model are shown in Tab. 3 and 
Fig.  9, respectively. The RMSEC and RMSEP 
values of the SWs-LS-SVM regression model 
were 0.64 g·kg-1 and 1.18 g·kg-1, respectively. By 
comparing the results in the Tab. 3, it can be seen 
that the SWs-LS-SVM model outperformed the 
PCs-LS-SVM model.

Conclusions 

In this paper, qualitative and quantitative 
analyses of adulteration of infant formula with 
HLP was performed by NIR spectroscopy in 
combination with LS-SVM. In the classification 
approach, PCs extracted by PCA were used as the 
input data of the LS-SVM class model. The correct 
classification rates of authentic samples and HLP 
adulterated samples in validation set were 96.7 % 
and 95.6 %, respectively. From the PCA score plot 
and the variation trend of correct classification 
rate in cross validation, it could be found that PC2 
played an important role in discriminating the 
presence of HLP in infant formula.

In the regression approach, PCs-LS-SVM and 
SWs-LS-SVM were used to predict the content of 
HLP with PCs and SWs as input data, respectively. 
In the PCs-LS-SVM model, the RMSEC and 
RMSEP values were 1.02 g·kg-1 and 1.46 g·kg-1, 
respectively. In the SWs-LS-SVM model, SWs 
were selected in accordance with the regression 

coefficients obtained by PLS model. The RMSEC 
and RMSEP values of the SWs-LS-SVM regression 
model were 0.64 g·kg-1 and 1.18 g·kg-1, respective-
ly, which outperformed the PCs-LS-SVM model.

The overall results demonstrated that NIR 
spectroscopy combined with LS-SVM could pro-

Tab. 3. Calibration and validation results for the least squares support vector machine regression models.

Root mean squared error [g·kg-1] R2

Calibration Cross-validation Prediction Prediction

PCs-LS-SVM 1.02 1.35 1.46 0.814

SWs-LS-SVM 0.64 1.29 1.18 0.880

PCs-LS-SVM – least squares support vector machine model with principal components as input, SWs-LS-SVM – least squares 
support vector machine model with sensitive wavelengths as input, R2 – determination coefficient.
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vide a simple, rapid, economical and non-de-
structive detection of adulteration of infant for-
mula with HLP. Based on our results, LS-SVM is 
a  promising technique that can be used for dis-
crimination and quantification of adulteration in 
dairy products. However, in order to achieve high 
prediction accuracy and model stability, particular 
attention has to be always paid to selection of in-
put data and to optimization of parameters. 
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